Эшелонированная оборона. Эшелонированная оборона: насколько уязвимы американские самолёты и ракеты для российских средств ПВО . Модель глубоко эшелонированной защиты информации

Принцип эшелонированной обороны получает все более широкое распространение среди специалистов по безопасности. Однако, его практическая реализация часто неверна. Стратегия обороны не должна ограничиваться лишь нагромождением многочисленных контрольных проверок и технологий защиты. Сущность эшелонированной обороны - в продуманном расположении средств защиты. Для успешной организации эшелонированной обороны необходимо провести хороший анализ угрозы, в ходе которого необходимо определить:

  • ресурсы и значение этих ресурсов;
  • опасности, которым подвергаются ресурсы, и вероятность каждой угрозы;
  • векторы угрозы, которые могут быть использованы для атаки на предприятие.

Концепция эшелонированной обороны существует тысячи лет, поэтому я приведу часто используемый пример средневекового замка, чтобы показать, что свойственно, и что несвойственно эшелонированной обороне. Для ясности изложения, упростим задачу и рассмотрим только один из векторов угрозы, против которого необходимо защитить замок: прямая атака через главные ворота. Замок располагает многочисленными средствами защиты против этого вектора угрозы. Если оборона правильно организована, взломщикам придется преодолеть каждый рубеж, прежде чем им удастся по-настоящему угрожать людским, военным, политическим или материальным ресурсам замка.

Во-первых, нападающие должны уклониться от града стрел на подходе к замку. Затем, если подвесной мост поднят, нападающие должны преодолеть ров и проникнуть в ворота, закрытые поднятым мостом. После этого нападающие должны пройти по узкому проходу, образованному стенами и попытаться пройти сквозь внутренние ворота под ударами защитников замка.

Этот сценарий - хороший пример многоуровневой обороны, организованной против одного вектора угрозы. Однако, простое наличие средств защиты не означает, что предприятие располагает действительно эшелонированной обороной против конкретных угроз. Например, еще один вектор угрозы против замка - подрыв стен. От этой опасности защищает ров, но как быть, если осаждающим удастся осушить его? Оборону замка вряд ли можно назвать эшелонированной, если нет дополнительных средств, например, глубоко уходящего в землю фундамента или готового запаса кипящей смолы, которую можно в любой момень вылить на противника со стен.

В мире ИТ не существует единого непреодолимого средства защиты, и ни одна стратегия информационной безопасности не будет полной без эшелонированной стратегии. Непросто реализовать эту стратегию в корпорации, которой необходимо защитить свои информационные ресурсы. Преимущество замков заключалось в наличии единственной точки входа, а в производственных сетях компаний существует множество входов (в частности, соединения с поставщиками, провайдерами услуг и потребителями), что делает оборону более пористой. Кроме того, в настоящее время число векторов угроз гораздо больше, чем несколько лет назад. В начале 1990-х безопасность сети сводилась, в сущности, к защите от атак на уровне пакетов, а брандмауэры были маршрутизаторами с дополнительными возможностями. Сегодня угрозы для внутренних ресурсов исходят от переполнений буфера, SQL-подмен, вредных Web-страниц, почтовых сообщений с активным контентом, беспроводных соединений, поддельных URL и многих других типов атаки.

В столь динамичной, сложной среде взломщик может обойти любое препятствие при наличии благоприятных обстоятельств. Рассмотрим, например, антивирусные программы. Новый вектор атаки может обойти классические проверки, также как программы IM обходят проверки со стороны антивирусных утилит. К сети предприятия может быть подключен единственный компьютер без обязательной антивирусной программы. Важное обновление вирусных сигнатур может выйти с опозданием или не будет применено в филиале. Антивирусный механизм может пропустить вирус, или произойдет сбой антивирусной программы из-за некорректного исправления. Все эти события случаются в действительности.

Стратегия исчерпывающей эшелонированной обороны

В современных условиях важнее, чем когда-либо в прошлом, применить несколько средств против каждой угрозы. На примере антивирусной программы можно рассмотреть, как использовать комбинированные приемы для формирования исчерпывающей эшелонированной обороны против вирусов и других вредных программ.

Начальный уровень представлен антивирусной программой, направленной против самых распространенных векторов (или входов) угрозы, к которым относятся электронная почта, Web и IM. Антивирусную технологию следует установить на шлюзовых серверах SMTP, которые обрабатывают входящий почтовый поток, и развернуть антивирусное программное обеспечение на брандмауэрах и входных устройствах, которые перехватывают данные, пересылаемые при перемещениях по Web и загрузке файлов. Средства безопасности IM менее зрелые, чем решения для электронной почты и Web. Кроме того, проблема усложняется из-за широкого распространения IM-служб и способности IM-клиентов обходить защитные меры шлюзов. Тем не менее, существуют решения, с помощью которых можно направить внутренние и внешние IM-сообщения через единый канал с антивирусным фильтром и другими функциями безопасности.

Но электронная почта, Web и IM - не единственные векторы распространения вредных программ. Например, ими могут быть сменные носители, в частности, гибкие диски, компакт диски, устройства USB и флэш-памяти. Пользователь может принести ноутбук в Internet-кафе, подключиться к Wi-Fi-сети, подвергнуться нападению, а затем вернуться с компьютером в офис и установить соединение с сетью предприятия, обойдя периметрическую защиту. Это лишь немногие из возможных путей распространения опасных программ. Невозможно блокировать все маршруты проникновения с помощью специализированных средств. В конечном итоге, в каждой организации появляются защищенные векторы и открытые векторы без превентивных мер.

Что происходит, если вредная программа обходит периметрическую защиту через незащищенный вектор, или специализированное средство безопасности оказывается неэффективным? Дальнейшее развитие событий зависит от наличия эшелонированной обороны. В средние века главной заботой защитников замка была круговая оборона от атаки по окружающей местности. Оборонительные укрепления начинались на дальних подходах к замку, и становились все более мощными по мере приближения к центру замка. Наиболее защищенной была главная башня, которая представляла собой замок в замке. Если изобразить оборонительные рубежи в виде концентрических кругов вокруг защищаемого объекта, то становится очевидной причина выбора данного подхода. Чем дальше от объекта, тем больше длина окружности и тем больше ресурсов требуется для организации круговой обороны.

Различные методы защиты от вирусов, рассмотренные выше, обеспечивают широту, но не глубину обороны. Например, зараженный файл проходит проверку не более, чем одним из антивирусных инструментом, в зависимости от вектора, из которого появился файл. Несмотря на важность ширины, нельзя надеяться блокировать любую опасность на физическом или логическом периметре сети. Поэтому блокируются самые простые или часто используемые векторы заражения, а затем формируется более глубокое кольцо обороны.

Второй уровень обороны может представлять собой комбинацию средств обнаружения, лечения и дополнительной профилактики. Пример средств обнаружения - сканирование файлов в процессе приема. Во многих антивирусных продуктах файлы проверяются прежде, чем их смогут открыть приложения. Антивирусное решение, которое отправляет в карантин или восстанавливает файлы, одновременно выполняет и функцию лечения. Если сканирование файлов в процессе приема приводит к заметному падению быстродействия пользовательских систем или процессоров, то можно регулярно сканировать тома серверов и рабочих станций, и другие хранилища файлов в периоды малой рабочей нагрузки.

Разнообразные другие средства обнаружения могут быть как сложными, так и простыми, но эффективными. К сложным относятся системы обнаружения и предотвращения несанкционированного доступа, которые контролируют трафик в сетях, отыскивая вирусы и "червей". Однако, в этих дорогостоящих системах используется база данных известных атак, которая нуждается в постоянном обновлении. Кроме того, при анализе пакетов существует проблема потерянных пакетов и некорректного восстановления потоков данных. Среди простых решений - организация папок-приманок, в которых содержатся легко доступные для модификации файлы. Затем специальные процессы обнаруживают изменения в файлах. Файлы представляют собой лишь наживку, и любая попытка изменить их может рассматриваться как свидетельство деятельности вредной программы.

Можно реализовать другой уровень превентивного контроля, разместив брандмауэры на хост-машинах, максимально ужесточив порядок изменения файлов и исключив или ограничив доступ к разделяемым папкам. В результате всех этих мер вирусам и "червям" труднее обнаруживать еще незараженные файлы и системы.

Оценка надежности защиты

Эшелонированная оборона - эффективный способ борьбы с многовекторными постоянно меняющимися опасностями в современной информационной среде. Защита должна быть не только широкой, но и глубокой. Не следует ограничиваться лишь физической зоной обороны, рассматривая только физическую сеть и границы систем. В отличие от архитектора замка, которому требовалось защитить единственную точку входа, администратору ИТ приходится иметь дело со множеством точек в виде отдельных компьютеров, приложений, хранилищ данных и процессов. Оборона будет действительно эшелонированной, если для каждого ресурса существует более одного средства защиты от конкретной угрозы.

К 2025 году, можно назвать эффективным ответом на американскую стратегию мгновенного глобального удара, считает полковник в отставке Виктор Литовкин .

Эшелонированная система ПРО

О том, что в нашей стране к 2025 году завершится создание эшелонированной национальной системы ПРО, журналистам рассказал главный конструктор системы предупреждения о ракетном нападении (СПРН) Сергей Боев . Ее создание он назвал ответной реакцией на активное развитие средств воздушного нападения в мире, которые сегодня оказывают во многом определяющее значение на ход военных конфликтов.

«Система противоракетной обороны имеет в себе два эшелона - наземный и космический. В наземный эшелон входят станции предупреждения о ракетном нападении, расположенные по периметру нашей страны, а также зенитно-ракетные и противоракетные комплексы, способные перехватывать как стратегические, так и ракеты средней и меньшей дальности.

Космический эшелон, который также является системой предупреждения о ракетном нападении, при помощи разведывательной техники, включающей спутниковую аппаратуру, обнаруживает пуски ракет в любую сторону, но в первую очередь в сторону России. Когда мы говорим об эшелонированной обороне, то предполагаем размещение радиолокационных станций и систем ЗРК не только по периметру, но и внутри страны. Подобный подход позволит не пропустить удары по ключевым промышленным районам страны, военным объектам и культурным центрам», - объясняет ФБА «Экономика сегодня» военный эксперт.

Предполагается, что к 2025 году эшелонированная оборона объединит в единое целое системы противоракетной и противовоздушной обороны, в том числе на территории наших союзников на постсоветском пространстве. Создание подобного зонта, по мнению эксперта, ведет к стиранию границ между тактической и стратегической системами ПВО и ПРО.

Мгновенный глобальный удар

В состав эшелонированной системы ПРО войдут такие комплексы малой дальности как «Тунгуска», «Бук», «Панцирь» и «Тор-М2» и средней дальности С-300 и «Витязь». Как отмечает военный эксперт Алексей Леонков , замкнет эшелонированную систему обороны принятие на вооружение ЗРК большой дальности С-500, способного поражать цели на расстоянии до 100 километров над землей.

«Такую защиту можно назвать эффективным ответом на концепцию массированной воздушно-космической атаки США , известную как «Мгновенный глобальный удар». Система обороны разрабатывается, в том числе с учетом перспективных разработок, еще не принятых на вооружение, включая гиперзвуковые крылатые ракеты. Пока у противника такого оружия нет, но мы будем готовы такие ракеты перехватить в случае их появления. Стоит отметить, что никакая другая страна, включая США, не располагает столь развитой системой воздушной обороны», - резюмирует Виктор Литовкин.

Как обратил внимание Сергей Боев, стратегия мгновенного глобального удара будет доведена до ума к 2030 году. К этому моменту США смогут одновременно привлечь для нанесения ударов и межконтинентальные баллистические ракеты в различном оснащении, и гиперзвуковые средства поражения, и крылатые ракеты различного базирования. Прямую угрозу нам здесь несут наземные комплексы ПРО Aegis, размещаемые в Румынии и Польше . Исходя из текущих вызовов, развертывание к середине 20-х годов эшелонированной системы ПРО является стратегической задачей для нашей страны.

Эшелонированная оборона — это многоступенчатая защита от попыток внешнего проникновения и воздействия на защищаемую информацию.

Обычно под стратегией обороны подразумевается нагромождение многочисленных проверок и технологий защиты. Но это не всегда повышает информационную безопасность.

Представьте себе ситуацию, где компании нанимают дополнительных специалистов по кибербезопасности без особых требований. Да, расходы на безопасность увеличиваются, но не факт, что уровень кибербезопасности повысится. Не стоит забывать про утечку информации за счет не контролируемых физических полей

Глубоко эшелонированная защита

В идеале, эти спецы должны не дублировать свои обязанности, а расширять возможности друг друга. То есть каждый из них должен быть экспертом в какой-то определенной области. Сообща они смогут настроить глубоко эшелонированную защиту, которая обеспечит более надежную защиту, чем нагромождение многочисленных проверок и технологий защиты.

Почему это так важно?

Например, системный администратор настроил для организации хорошо защищенную локальную сеть от внешнего проникновения, но ее сотрудники не обладают необходимым уровнем знаний, которые смогут уберечь их от фишинговых атак и прочих методов социальной инженерии.

Получается сотрудник может сам запустить вредоносный скрипт, тем самым поможет хакеру обойти многие уровни защиты. В этом и заключается суть использования глубоко эшелонированной защиты.

Отчеты компаний по информационной безопасности говорят, что с каждым годом хакерские атаки становятся более сложными. Если Вы хотите защитить свой бизнес, то нужно идти в ногу со временем.

Компания Майкрософт одна из первых стала развивать машинное обучение. Сейчас в windows 10 они используют искусственный интеллект, который анализирует поведение пользователя и может определять не свойственные для него действия и передавать информацию в центр безопасности. Недавно им удалось остановить крупную атаку. За 12 часов около 500 000 компьютеров было заражено вредоносным скриптом, который устанавливал программы для майнинга.

Модель глубоко эшелонированной защиты информации

Скажу сразу, что не стоит брать уже готовую модель эшелонированной защиты, так как высока вероятность, что она может не подойти. Например, окажется слишком сложной и не будет учитывать специфику работы организации для которой необходима индивидуальная модель глубоко эшелонированной защиты. Кстати, разработка с нуля может оказаться более эффективной, чем переработка модели взятой у другой организации.

Аннотация: В лекции рассказывается о методологических аспектах защиты информационных систем.

Требования к архитектуре ИС для обеспечения безопасности ее функционирования

Идеология открытых систем существенно отразилась на методологических аспектах и направлении развития сложных распределенных ИС. Она базируется на строгом соблюдении совокупности профилей, протоколов и стандартов де-факто и де-юре. Программные и аппаратные компоненты по этой идеологии должны отвечать важнейшим требованиям переносимости и возможности согласованной, совместной работы с другими удаленными компонентами. Это позволяет обеспечить совместимость компонент различных информационных систем, а также средств передачи данных. Задача сводится к максимально возможному повторному использованию разработанных и апробированных программных и информационных компонент при изменении вычислительных аппаратных платформ, ОС и процессов взаимодействия.

При создании сложных, распределенных информационных систем, проектировании их архитектуры, инфраструктуры, выборе компонент и связей между ними следует учитывать помимо общих (открытость, масштабируемость , переносимость , мобильность, защита инвестиций и т.п.) ряд специфических концептуальных требований, направленных на обеспечение безопасности функционирования самой системы и данных:

  • архитектура системы должна быть достаточно гибкой, т.е. должна допускать относительно простое, без коренных структурных изменений, развитие инфраструктуры и изменение конфигурации используемых средств, наращивание функций и ресурсов ИС в соответствии с расширением сфер и задач ее применения;
  • должны быть обеспечены безопасность функционирования системы при различных видах угроз и надежная защита данных от ошибок проектирования, разрушения или потери информации, а также авторизация пользователей, управление рабочей загрузкой, резервированием данных и вычислительных ресурсов, максимально быстрым восстановлением функционирования ИС;
  • следует обеспечить комфортный, максимально упрощенный доступ пользователей к сервисам и результатам функционирования ИС на основе современных графических средств, мнемосхем и наглядных пользовательских интерфейсов;
  • систему должна сопровождать актуализированная, комплектная документация, обеспечивающая квалифицированную эксплуатацию и возможность развития ИС.

Подчеркнем, что технические системы безопасности, какими бы мощными они ни были, сами по себе не могут гарантировать надежность программно-технического уровня защиты. Только сфокусированная на безопасность архитектура ИС способна сделать эффективным объединение сервисов, обеспечить управляемость информационной системы, ее способность развиваться и противостоять новым угрозам при сохранении таких свойств, как высокая производительность , простота и удобство использования . Для того чтобы выполнить эти требования архитектура ИС должна строиться на следующих принципах.

Проектирование ИС на принципах открытых систем, следование признанным стандартам, использование апробированных решений, иерархическая организация ИС с небольшим числом сущностей на каждом уровне - все это способствует прозрачности и хорошей управляемости ИС.

Непрерывность защиты в пространстве и времени, невозможность преодолеть защитные средства, исключение спонтанного или вызванного перехода в небезопасное состояние - при любых обстоятельствах, в том числе нештатных, защитное средство либо полностью выполняет свои функции, либо полностью блокирует доступ в систему или ее часть

Усиление самого слабого звена, минимизация привилегий доступа, разделение функций обслуживающих сервисов и обязанностей персонала. Предполагается такое распределение ролей и ответственности, чтобы один человек не мог нарушить критически важный для организации процесс или создать брешь в защите по неведению или заказу злоумышленников.

Применительно к программно-техническому уровню принцип минимизации привилегий предписывает выделять пользователям и администраторам только те права доступа , которые необходимы им для выполнения служебных обязанностей. Это позволяет уменьшить ущерб от случайных или умышленных некорректных действий пользователей и администраторов.

Эшелонирование обороны, разнообразие защитных средств, простота и управляемость информационной системы и системой ее безопасности. Принцип эшелонирования обороны предписывает не полагаться на один защитный рубеж, каким бы надежным он ни казался. За средствами физической защиты должны следовать программно-технические средства, за идентификацией и аутентификацией - управление доступом , протоколирование и аудит .

Эшелонированная оборона способна не только не пропустить злоумышленника, но и в некоторых случаях идентифицировать его благодаря протоколированию и аудиту. Разнообразие защитных средств предполагает создание различных по своему характеру оборонительных рубежей, чтобы от потенциального злоумышленника требовалось овладение разнообразными и, по возможности, несовместимыми между собой навыками.

Простота и управляемость ИС в целом и защитных средств в особенности. Только в простой и управляемой системе можно проверить согласованность конфигурации различных компонентов и осуществлять централизованное администрирование . В этой связи важно отметить интегрирующую роль Web-сервиса, скрывающего разнообразие обслуживаемых объектов и предоставляющего единый, наглядный интерфейс . Соответственно, если объекты некоторого вида (например, таблицы базы данных ) доступны через Интернет , необходимо заблокировать прямой доступ к ним, поскольку в противном случае система будет уязвимой, сложной и плохо управляемой.

Продуманная и упорядоченная структура программных средств и баз данных. Топология внутренних и внешних сетей непосредственно отражается на достигаемом качестве и безопасности ИС, а также на трудоемкости их разработки. При строгом соблюдении правил структурного построения значительно облегчается достижение высоких показателей качества и безопасности, так как сокращается число возможных ошибок в реализующих программах, отказов и сбоев оборудования, упрощается их диагностика и локализация .

В хорошо структурированной системе с четко выделенными компонентами (клиент, сервер приложений, ресурсный сервер ) контрольные точки выделяются достаточно четко, что решает задачу доказательства достаточности применяемых средств защиты и обеспечения невозможности обхода этих средств потенциальным нарушителем.

Высокие требования, предъявляемые к формированию архитектуры и инфраструктуры на стадии проектирования ИС, определяются тем, что именно на этой стадии можно в значительной степени минимизировать число уязвимостей, связанных с непредумышленными дестабилизирующими факторами, которые влияют на безопасность программных средств, баз данных и систем коммуникации.

Анализ безопасности ИС при отсутствии злоумышленных факторов базируется на модели взаимодействия основных компонент ИС (рис. 6.1) [Липаев В. В., 1997]. В качестве объектов уязвимости рассматриваются:

  • динамический вычислительный процесс обработки данных, автоматизированной подготовки решений и выработки управляющих воздействий;
  • объектный код программ, исполняемых вычислительными средствами в процессе функционирования ИС;
  • данные и информация, накопленная в базах данных;
  • информация, выдаваемая потребителям и на исполнительные механизмы.


Рис. 6.1.

Полное устранение перечисленных угроз принципиально невозможно. Задача состоит в выявлении факторов, от которых они зависят, в создании методов и средств уменьшения их влияния на безопасность ИС, а также в эффективном распределении ресурсов для обеспечения защиты, равнопрочной по отношению ко всем негативным воздействиям.

Стандартизация подходов к обеспечению информационной безопасности

Специалистам в области ИБ сегодня практически невозможно обойтись без знаний соответствующих профилей защиты, стандартов и спецификаций. Формальная причина состоит в том, что необходимость следования некоторым стандартам (например, криптографическим и "Руководящим документам" Гостехкомиссии РФ) закреплена законодательно. Убедительны и содержательные причины: стандарты и спецификации - одна из форм накопления и реализации знаний, прежде всего о процедурном и программно-техническом уровнях ИБ и ИС, в них зафиксированы апробированные, высококачественные решения и методологии, разработанные наиболее квалифицированными компаниями в области разработки ПО и безопасности программных средств.

На верхнем уровне можно выделить две существенно отличающиеся друг от друга группы стандартов и спецификаций:

1. оценочные стандарты, предназначенные для оценки и классификации ИС и средств защиты по требованиям безопасности;

2. спецификации, регламентирующие различные аспекты реализации и использования средств и методов защиты.

Эти группы дополняют друг друга. Оценочные стандарты описывают важнейшие с точки зрения ИБ понятия и аспекты ИС, играя роль организационных и архитектурных спецификаций. Специализированные стандарты и спецификации определяют, как именно строить ИС предписанной архитектуры и выполнять организационные и технические требования для обеспечения информационной безопасности (рис. 6.2 , рис. 6.3).


Рис. 6.2.


Рис. 6.3.

Из числа оценочных необходимо выделить стандарт "Критерии оценки доверенных компьютерных систем" и его интерпретацию для сетевых конфигураций (Министерство обороны США), "Гармонизированные критерии Европейских стран", международный стандарт "Критерии оценки безопасности информационных технологий" и, конечно, "Руководящие документы" Гостехкомиссии РФ. К этой же группе относится и Федеральный стандарт США " Требования безопасности для криптографических модулей", регламентирующий конкретный, но очень важный и сложный аспект информационной безопасности.

Технические спецификации, применимые к современным распределенным ИС, создаются главным образом "Тематической группой по технологии Интернет " ( Internet Engineering Task Force - IETF ) и ее подразделением - рабочей группой по безопасности. Ядром технических спецификаций служат документы по безопасности на IP-уровне (IPSec). Кроме этого, анализируется защита на транспортном уровне ( Transport Layer Security - TLS ), а также на уровне приложений (спецификации GSS-API , Kerberos).

Интернет -сообщество уделяет должное внимание административному и процедурному уровням безопасности, создав серию руководств и рекомендаций: "Руководство по информационной безопасности предприятия", "Как выбирать поставщика Интернет -услуг", "Как реагировать на нарушения информационной безопасности" и др.

В вопросах сетевой безопасности востребованы спецификации X.800 " Архитектура безопасности для взаимодействия открытых систем", X.500 " Служба директорий : обзор концепций, моделей и сервисов" и X.509 " Служба директорий : каркасы сертификатов открытых ключей и атрибутов".

В последние 15 лет утверждена большая серия международной организацией по стандартизации ( International Organization for Standardization - ISO ) стандартов по обеспечению безопасности информационных систем и их компонентов. Подавляющее большинство из этих стандартов относятся к телекоммуникациям, процессам и протоколам обмена информацией в распределенных системах и защите ИС от несанкционированного доступа. В связи с этим при подготовке системы защиты и обеспечения безопасности из стандартов должны быть отобраны наиболее подходящие для всего жизненного цикла конкретного проекта ПС.

В следующей главе "Технологии и стандартизация открытых вычислительных и информационных систем" будет подробно рассказано о структуре и деятельности ISO и её технических комитетах, в частности об Объединенном техническом комитете № 1 ( Joint Technical Committee 1 - JTC1), предназначенном для формирования всеобъемлющей системы базовых стандартов в области ИТ и их расширений для конкретных сфер деятельности. В зависимости от проблем, методов и средств защиты вычислительных и информационных систем международные стандарты ISO можно разделить на несколько групп [В. Липаев., http://www.pcweek.ru/themes/detail.php?ID=55087 ].

Первая группа стандартов - ISO /IEC JTC1/SC22 " Поиск , передача и управление информацией для взаимосвязи открытых систем (ВОС)" - создана и развивается под руководством подкомитета SC22. Стандарты этой группы посвящены развитию и детализации концепции ВОС. Защита информации в данной группе рассматривается как один из компонентов, обеспечивающих возможность полной реализации указанной концепции. Для этого определены услуги и механизмы защиты по уровням базовой модели ВОС, изданы и разрабатываются стандарты, последовательно детализирующие методические основы защиты информации и конкретные протоколы защиты на разных уровнях открытых систем.

Вторая группа стандартов - ISO /IEC JTC1/SC27 - разрабатывается под руководством подкомитета SC27 и ориентирована преимущественно на конкретные методы и алгоритмы защиты. В эту группу объединены методологические стандарты защиты информации и криптографии, независимо от базовой модели ВОС. Обобщаются конкретных методов и средств защиты в систему организации и управления защитой ИС.

В процессе планирования и проектирования программной системы защиты ИС целесообразно использовать третью группу из представленных ниже наиболее общих методологических стандартов, регламентирующих создание комплексов защиты. Вследствие близких целей стандартов их концепции и содержание частично перекрещиваются и дополняют друг друга. Поэтому стандарты целесообразно использовать совместно (создать профиль стандартов), выделяя и адаптируя их компоненты в соответствии с требованиями конкретного проекта ИС.

1. ISO 10181:1996. Ч. 1-7. "ВОС. Структура работ по обеспечению безопасности в открытых системах". Часть 1. Обзор. Часть 2. Структура работ по аутентификации. Часть 3. Структура работ по управлению доступом. Часть 4. Структура работ по безотказности. Часть 5. Структура работ по конфиденциальности. Часть 6. Структура работ по обеспечению целостности. Часть 7. Структура работ по проведению аудита на безопасность .

2. ISO 13335:1996-1998. Ч. 1-5. ИТ. ТО. "Руководство по управлению безопасностью". Часть 1. Концепция и модели обеспечения безопасности информационных технологий. Часть 2. Планирование и управление безопасностью информационных технологий. Часть 3. Техника управления безопасностью ИТ. Часть 4. Селекция (выбор) средств обеспечения безопасности. Часть 5. Безопасность внешних связей.

3. ISO 15408:1999. Ч.26 1-3. "Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий". Часть 1. Введение и общая модель. Часть 2. Защита функциональных требований. Часть 3. Защита требований к качеству.

Первый стандарт этой группы, ISO 10181, состоит из семи частей и начинается с общей концепции обеспечения безопасности открытых информационных систем и развивает положения стандарта ISO 7498-2. В первой его части приводятся основные понятия и общие характеристики методов защиты и акцентируется внимание на необходимости сертификации системы обеспечения безопасности ИС при ее внедрении. Далее кратко описаны основные средства обеспечения безопасности ИС, особенности работ по их созданию, основы взаимодействия механизмов защиты, принципы оценки возможных отказов от обслуживания задач ИС по условиям защиты. Показаны примеры построения общих схем защиты ИС в открытых системах. Содержание частей стандарта достаточно ясно определяется их названиями.

Второй стандарт, ISO 13335, отражает широкий комплекс методологических задач, которые необходимо решать при проектировании систем обеспечения безопасности любых ИС. В его пяти частях внимание сосредоточено на основных принципах и методах проектирования равнопрочных систем защиты ИС от угроз различных видов. Это руководство достаточно полно систематизирует основные методы и процессы подготовки проекта защиты для последующей разработки конкретной комплексной системы обеспечения безопасности функционирования ИС.

Изложение базируется на понятии риска от угроз любых негативных воздействий на ИС. В первой части стандарта описаны функции средств защиты и необходимые действия по их реализации, модели уязвимости и принципы взаимодействия средств защиты. При проектировании систем защиты рекомендуется учитывать: необходимые функции защиты, возможные угрозы и вероятность их осуществления, уязвимость , негативные воздействия исполненияугроз, риски; защитные меры; ресурсы (аппаратные, информационные, программные, людские) и их ограниченность. В остальных частях стандарта предложены и развиваются концепция и модель управления и планирования построения системы защиты, взаимодействие компонентов которой в общем виде представлено на рис. 6.4 .

В стандарте ISO 13335 выделены функциональные компоненты и средства обеспечения безопасности, а также принципы их взаимодействия. Процессы управления защитой должны включать: управление изменениями и конфигурацией; анализ и управление риском; прослеживаемость функций; регистрацию, обработку и мониторинг инцидентов. Приводятся общие требования к оценке результатов обеспечения безопасности, а также возможные варианты организации работы специалистов для комплексного обеспечения безопасности ИС.

Систематизированы политика и техника планирования, выбора, построения и использования средств обеспечения безопасности для ограничения допустимого риска при различных схемах взаимодействия и средствах защиты. Рекомендуются различные подходы и стратегии при создании систем защиты и поддержке их последующего развития. Содержание частей стандарта детализирует общие концепции и достаточно точно определяется их названиями. Изложенную в стандарте модель планирования обеспечения безопасности целесообразно конкретизировать и использовать как фрагмент системного проекта разработки ИС.


Рис. 6.4.

Критерии оценки механизмов безопасности программно-технического уровня представлены в международном стандарте ISO 15408-1999 " Общие критерии оценки безопасности информационных технологий" ("The Common Criteria for Information Technology Security Evaluation "), принятом в 1999 году. Этот стандарт закрепил базовые основы стандартизации в области информационной защиты и получил дальнейшее развитие в серии стандартов, о которых будет сказано ниже.

В первой части стандарта представлены цели и концепция обеспечения безопасности, а также общая модель построения защиты ИС. Концепция базируется на типовой схеме жизненного цикла сложных систем, последовательной детализации требований и спецификаций компонентов. В ней выделены: окружающая среда; объекты; требования; спецификации функций; задачи инструментальных средств системы защиты. Изложены общие требования к критериям оценки результатов защиты, Профилю по безопасности, целям оценки требований и к использованию их результатов. Предложен проект комплекса общих целей, задач и критериев обеспечения безопасности ИС.

Во второй части представлена парадигма построения и реализации структурированных и детализированных функциональных требований к компонентам защиты ИС. Выделены и классифицированы одиннадцать групп (классов) базовых задач обеспечения безопасности ИС. Каждый класс детализирован наборами требований, которые реализуют определенную часть целей обеспечения безопасности и, в свою очередь , состоят из набора более мелких компонентов решения частных задач.

В классы включены и подробно описаны принципы и методы реализации требований к функциям безопасности: криптографическая поддержка ; защита коммуникаций и транспортировка (транзакции) информации; ввод, вывод и хранение пользовательских данных; идентификация и аутентификация пользователей; процессы управления функциями безопасности; защита данных о частной жизни; реализация ограничений по использованию вычислительных ресурсов; обеспечение надежности маршрутизации и связи между функциями безопасности, а также некоторые другие классы требований.

Для каждой группы задач приводятся рекомендации по применению набора наиболее эффективных компонентов и процедур обеспечения безопасности ИС. Для достижения целей безопасности ИС с определенным уровнем гарантии качества защиты компоненты функциональных требований и способов их реализации рекомендуется объединять в унифицированные "Профили защиты многократного применения".

Эти "Профили" могут служить базой для дальнейшей конкретизации функциональных требований в "Техническом задании по безопасности" для определенного проекта ИС и помогают избегать грубых ошибок при формировании таких требований. Обобщения оценок спецификации требований "Задания по безопасности" должны давать заказчикам, разработчикам и испытателям проекта возможность делать общий вывод об уровне его соответствия функциональным требованиям и требованиям гарантированности защиты ИС. В обширных приложениях изложены рекомендации

Прикрытие на ближних подступах

ЗПРК «Панцирь-С1» - это универсальное средство борьбы с воздушными целями, имеющих скорость до 1000 м/с, на дистанции от 200 до 20 тысяч метров. Комплекс может уничтожать цели, летящие на высоте от 5 метров до 15 тысяч метров. Также он может бороться с легкой бронированной техникой противника и его живой силой. Это комплекс практически мгновенно может обнаружить и уничтожить самолет, вертолет, крылатую ракету или управляемую авиабомбу противника.

Этот зенитный ракетно-пушечный комплекс может быть размещен на колесном или гусеничном шасси, возможна и стационарная установка. Комплекс имеет защищенную от помех систему связи.

Уничтожение воздушных целей производится за счет пушечного вооружения и зенитных ракет, имеющих ИК и РЛ наведение.

Каждая машина имеет три локатора: РЛС раннего обнаружения и целеуказания, радар сопровождения и наведения, а также пассивный оптический радар.

РЛС обнаружения цели может сразу вести до двадцати объектов, передавать в бортовую вычислительную машину их координаты и данные по скорости движения. Кроме этого, данная РЛС определяет тип цели и ее государственную принадлежность.

РЛС сопровождения целей и ракет в значительной степени определяет высокую эффективность комплекса, она изготовлена с применением фазированной антенной решетки. Применение такого радара позволяет ЗПРК вести огонь сразу по трем целям, при этом по наиболее опасной из них возможен залп из двух ракет.

Оптико-электронная система (ОЭС) используется для стрельбы по низколетящим целям, а также наземным целям.

Зенитный ракетный комплекс Бук

Противодействие на средней дальности

Самоходная огневая установка (СОУ) «Бук-М1» оснащена четырьмя ракетами и РЛС сантиметрового диапазона 9С35. СОУ предназначена для поиска, сопровождения и поражения воздушных целей. В установке есть цифровой вычислительный комплекс, аппаратура связи и навигации, телевизионно-оптический визир, автономная система жизнеобеспечения. СОУ может работать автономно, без привязки к командному пункту и станции обнаружения целей. Правда, в таком случае зона поражения уменьшается до 6-7 градусов по углу и 120 градусов по азимуту. СОУ может выполнять свои функции в условиях постановки радиоэлектронных помех.

Заряжающая установка комплекса «Бук» может осуществлять хранение, перевозку и погрузку восьми ракет.

Комплекс вооружен зенитной твердотопливной одноступенчатой ракетой 9М38. Она имеет радиолокационную систему наведения с полуактивным принципом работы и осколочно-фугасную боевую часть. На начальном этапе полета коррекция осуществляется радиосигналами, а на завершающем – за счет самонаведения.

Зенитно-ракетный комплекс С-400 «Триумф».

Дальний радиус и ближний космос

Индекс УВ ПВО 40Р6, по классификации НАТО SS SA-21 Growler. Комплекс предназначен для уничтожения современных и перспективных средств воздушно-космического нападения на средней и большой дальности.

ЗРК С-400 ( одновременного пуска 12 ракет) совместно с ОТРК «Искандер» и береговыми противокорабельными комплексами «Бастион» играет ключевую роль в концепции ВС России

Поделитесь с друзьями или сохраните для себя:

Загрузка...