Измерение твердости стали. Нормы испытания на твердость по бринеллю. Определение твердости металлов по Бринеллю: особенности

Методы измерения твердости

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твердого тела. Для определения твердости в поверхность материала с определунной силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твердости материала. Таким образом, под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора. В зависимости от способа измерения твердости материала, количественно ее характеризуют числами твердости по Бринеллю (НВ), Роквеллу (HRC) или Виккерсу (HV).

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием - сопротивление пластической деформации. Перспективным и высокоточным методом является метод непрерывного вдавливания, при котором записывается диаграмма перемещения, возникающего при внедрении индентора, с одновременной регистрацией усилий. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

Таблица 1 - Особенности различных методов измерени твердости

Способ измерения

Форма индентора

Нагружение F, H

Допустимая шероховатость поверхности Ra

Бринелля

по диаметру отпечатка

стальной шарик

статичиское

Роквелла

по глубине вдавливания

алмазный конусный наконечник или стальной шариковый

статическое

Супер-Роквелла

по глубине вдавливания

алмазный конус или стальной шарик

статическое

Виккерса

по глубине вдавливания или по диагонали отпечатка

алмазный наконечник в форме правильной черырехгранной пирамиды

статическое

по диаметру отпечатка

победитовый конус

статическое

Шора (Монотрон)

по заданной глубине отпечатка

алмазный или стальной наконеник

статическое

Мартенса

по ширине царапины

алмазный конус или пирамида

динамическое а

Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

Простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;

Высокая производительность;

Измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;

Возможность ориентировочно оценить по твердости другие характеристики металла (например предел прочности).

Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля (рис.1, а)), Роквелла (рис.1, б)) и Виккерса (рис.1, в))). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

Рисунок 1 - Схемы испытаний на твердость: а - по Бринеллю; б - по Роквеллу; в - по Виккерсу.

КЛАССИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ТВЕРДОСТИ

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЛЮ


Рисунок 2 - Схема испытиний на твердость по Бринеллю

Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра D под действием заданной нагрузки P в течение определенного времени (рис. 2). В результате вдавливания шарика на поверхности образца получается отпечаток (лунка).

Число твердости по Бринеллю, обозначаемое HB (при применении стального шарика для металлов с твердостью не более 450 единиц) или HBW

(при применении шарика из твердого сплава для металлов с твердостью не более 650 единиц), представляет собой отношение нагрузки P к площади поверхности сферического отпечатка F и измеряется в кгс/мм2 или МПа:

, (1)

Площадь шарового сегмента составит:

, мм2, (2)

где D –диаметр шарика, (мм);

h – глубина отпечатка, (мм).

Так как глубину отпечатка измерить трудно, а проще измерить диаметр отпечатка d, выражают h через диаметр шарика D и отпечатка d:

, мм (3) , мм2 (4)

Число твердости по Бринеллю определяется по формуле:

, кгс/мм2 (5)

В практике при определении твердости не делают вычислений по формуле (5), а пользуются таблицами, составленными для установленных диаметров шариков, отпечатков и нагрузок. Шарики применяют диаметром 1,2; 2,5; 5; 10 мм. Диаметр шарика и нагрузка выбираются в соответствии с толщиной и твердостью образца. При этом для получения одинаковых чисел твердости одного материала при испытании шариками разных диаметров необходимо соблюдать закон подобия между получаемыми диаметрами отпечатков. Поэтому твердость измеряют при постоянном соотношении между величиной нагрузки P и квадратом диаметра шарика D2. Это соотношение должно быть различным для металлов разной твердости.

Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200 или 200 HB 5/250/30, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с. При испытании на твёрдость шаром из карбида вольфрама обозначение НВ дополняется буквой W с сохранением указанных индексов.

При измерении твердости по методу Бринелля необходимо выполнять следующие условия:

Образцы с твердостью выше HB 450/650 кгс/мм2 испытывать запрещается;

Поверхность образца должна быть плоской и очищенной от окалины и других посторонних веществ;

Диаметры отпечатков должны находиться в пределах 0,2D

Образцы должны иметь толщину не менее 10-кратной глубины отпечатка (или менее диаметра шарика);

Расстояние между центрами соседних отпечатков и между центром отпечатка и краем образца должны быть не менее 4d;

Продолжительность выдержки под нагрузкой должна быть от 10 до 15 с для чёрных металлов, для цветных металлов и сплавов – от 10 до 180 с, в зависимости от материала и его твёрдости.

Диаметр отпечатка измеряют при помощи отсчетного микроскопа (лупы Бринелля), на окуляре которого имеется шкала с делениями, соответствующими десятым долям миллиметра. Измерение проводят с точностью до 0,05 мм в двух взаимно перпендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

Твердость по Роквеллу - твердость, определяемая разностью между условной максимальной глубиной проникновения индентора и остаточной глубиной его внедрения под действием основной нагрузки F1, после снятия этой нагрузки, но при сохранении предварительной нагрузки Fo. При этом методе индентором является алмазный конус или стальной закаленный шарик. В отличие от измерений по методу Бринелля твердость определяют по глубине отпечатка, а не по его площади. Глубина отпечатка измеряется в самом процессе вдавливания, что значительно упрощает испытания. Нагрузка прилагается последовательно в две стадии (ГОСТ 9013-59): сначала предварительная, обычно равная 10 кгс (для устранения влияния упругой деформации и различной степени шероховатости), а затем основная (рис.1, б)).

После приложения предварительной нагрузки индикатор, измеряющий глубину отпечатка, устанавливается на нуль. Когда отпечаток получен приложением окончательной нагрузки, основную нагрузку снимают и измеряют остаточную глубину проникновения наконечника h.

Твердомер Роквелла измеряет разность между глубиной отпечатков, полученных от вдавливания наконечника под действием основной и предварительной нагрузок. Каждое давление (единица шкалы) индикатора соответствует глубине вдавливания 2 мкм. Однако условное число твердости по Роквеллу (HR) представляет собой не указанную глубину вдавливания h, а величину 100 – h по черной шкале при измерении конусом и величину 130 – h по красной шкале при измерении шариком. Числа твердости по Роквеллу не имеют размерности и того физического смысла, который имеют числа твердости по Бринеллю, однако можно найти соотношение между ними с помощью специальных таблиц.

HRA, HRC, HRD – твердость по Роквеллу измеренная при внедрении в поверхность образца алмазного конуса.

HRB, HRE, HRF, HRG, HRH, HRK - твердость по Роквеллу измеренная при внедрении в поверхность образца стального сферического наконечника.

Твердость – свойство металла оказывать сопротивление проникновению в него другого более твердого тела, минимум в 10 раз. Для определения твердости применяют: методы Бриннеля, Роквелла и Виккерса.

Метод Бриннеля : в испытуемый материал под определенной нагрузкой вдавливают стальной закаленный шарик определенного диаметра и по величине диаметра шарового отпечатка судят о тверости. Отпечаток имеет вид шарового сегмента. Твердость по Бриннелю (НВ) определяют из выражения НВ=Р/F, где Р – нагрузка, F – площадь поверхности шарового отпечатка. К недостаткам метода Б. необходимо отнести невозможность испытания металлов, имеющих твердость меньше 450 МПа или толщину больше 2 мм. При испытании с твердостью более 450 МПа возможна деформация шарика и результаты будут неточными.

Метод Роквелла : основан на том, что в испытуемый образец вдавливается алмазный конус с углом при вершине 120 о или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус – для твердых, шарик – для мягких металлов. Шарик/алмазный конус вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной (0,1 кН) и основной. Соответственно с этими нагрузками на индикаторе прибора нанесены шкалы: черные А и С и красные В. Шкала А – измерение твердости изделий с очень твердым поверхностным слоем; шкала С – для измерения твердости закаленных сталей; шкала В – незакаленные стали, цветные металлы и сплавы, имеющие твердость HRB 100. Метод Р. отличается простотой и высокой скоростью измерения, обеспечивает сохранение качественной поверхности после испытаний, позволяет испытывать металлы как низкой, так и высокой твердости, при толщине изделий до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны серые, ковкие и высокопрочные).

Метод Виккреса : прибором ТП-2 (типа Виккерса) можно испытывать твердость изделий толщиной 0,15 мм и выше, а также поверхностные слои металла практически из любых материалов. Измерение методом В. заключается во вдавливании под нагрузкой в испытуемое изделие в течение определенного времени наконечника в виде правильной четырехгранной алмазной пирамиды. Определение твердости на приборе ТП-2 : получение отпечатка, оптическое измерение отпечатка, определение числа твердости. При определении твердости должны быть соблюдены следующие правила: нагрузка до необходимого значения должна возрастать плавно; поверхность испытуемого образца должна быть блестящей и не иметь посторонних включений; поверхность образца должна быть сухой и чистой; наконечник должен быть перпендикулярен к поверхности образца.

Определение твердости является одним из распространенных испытаний металлов. Оно отличается простотой техники, быстротой измерений и возможностью проведения их непосредственно на изделии.

Твердость металлов измеряют при помощи воздействия на их поверхность специального наконечника (индентора), изготовленного из малодеформирующегося материала (закаленная сталь, алмаз, твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы.

По способу воздействия индентора на испытуемый материал различают:

* статические методы определения твердости (метод вдавливания и метод царапания);

* динамические методы определения твердости (метод отскока падающего наконечника) и другие методы.

Метод вдавливания характеризует сопротивление металла пластической деформации при внедрении в него индентора из более твердого материала. Метод царапания характеризует сопротивление разрушению при воздействии на материал индентора в виде алмазной иглы. Метод отскока падающего наконечника характеризует сопротивление упругой деформации при динамическом воздействии на материал индентора в виде шарика.

Самым распространенным из перечисленных методов является метод вдавливания, который используется в приборах - твердомерах:

Роквелла

Виккерса

приборе для определения микротвердости (ПМТ).

Между твердостью пластичных материалов и другими механическими свойствами существует зависимость. Чем больше твердость металла определяемого вдавливанием, тем выше и его прочность, т.к. оба эти свойства представляют сопротивление пластической деформации. По этой же причине, чем тверже данный металл, тем ниже его пластичность.


Принципиальное устройство перечисленных твердомеров одинаково и может быть рассмотрено на примере прибора Бринеля (рис. 1). Основными узлами твердомеров являются станина, рабочий столик для измерения твердости образца или детали, наконечник (индентор), нагружающее устройство и прибор для измерения деформации.

Рисунок 1 – Устройство прибора Бринеля

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЮ

Измерение твердости по Бринелю производится в соответствии с ГОСТ 9012-59, срок действия которого продлен до настоящего времени.

При измерении твердости по Бринелю стальной закаленный шарик диаметром D вдавливается в испытуемый образец или изделие под действием нагрузки P в течение определенного времени. После удаления нагрузки измеряется диаметр d полученного при этом сферического отпечатка (рис. 2.а).

Рисунок 2. Схемы определения твердости:

а- по Бринелю;

Б - по Роквеллу;

в - по Виккерсу

В качестве индентора при работе на приборе Бринеля используют стальной закаленный шарик диаметром d = 1; 2; 2,5; 5 и 10 мм.

Для того, чтобы значения твердости при разных испытаниях были сопоставимы, величину нагрузки при данном диаметре шарика следует выбирать используя соотношение:

(2)

ЗначенияK могут быть равны 30; 15; 10; 5; 2,5; 1 в зависимости от твердости контролируемого материала. Так для черных металлов и их сплавов (железо, сталь) и других высокопрочных материалов K = 30; для алюминия, меди, никеля и их сплавов K = 10; для олова, свинца и сплавов на их основе K = 2,5.

При выборе условий испытания также важно учитывать толщину металла и продолжительность выдержки образца под нагрузкой, в соответствии со стандартами.

Перед началом испытаний выбранный индентор закрепляется в шпинделе твердомера, с помощью сменных грузов устанавливается выбранная нагрузка. Затем, образец подлежащий измерению, устанавливается на столик прибора и столик поднимается вверх, прижимая образец к шарику, пока не загорится сигнальная лампочка. Таким образом на образец подается предварительная нагрузка, которая на приборе Бринеля составляет 100 кгс (981 Н). Затем нажатием кнопки на корпусе прибора включается механизм, который автоматически осуществляет полное нагружение, выдержку образца под нагрузкой и ее снятие.

После этого нужно опустить столик, снять образец, измерить диаметр полученного отпечатка с помощью специального микроскопа (рис. 3) и определить твердость.

Рисунок 3 – Измерение диаметра отпечатка по шкале лупы

Твердость, определяемая на приборе Бринеля обозначается HB и определяется как отношение нагрузки, действующей на индентор, к площади поверхности сферического отпечатка F :

А так как площадь сферического отпечатка равна:

(4)

Следовательно значение твердости будет равно:

(5)

Если нагрузка выражена в ньютонах, то значение твердости умножается на коэффициент равный 0,102 .

Таким образом, диаметр отпечатка является критерием твердости по Бринелю.

Обычно вычисления твердости по вышеуказанной формуле не производят, а определяют твердость по таблице, которая приведена в ГОСТ 9012-59 или справочной литературе.

Зная число твердости по Бринелю, можно приближенно оценить временное сопротивление металла разрыву (предел прочности), используя количественное соотношение между этими характеристиками, установленное опытным путем. Например, для углеродистых сталей с твердостью HB от 120 до 175 используется соотношение:

s В = 3,4 HB (6)

Временное сопротивление определяется в МПа (Н/мм 2).

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

В ряде случаев определение твердости на приборе Бринеля оказывается невозможным. Нельзя, например, испытывать закаленную сталь, так как, индентор прибора Бринеля также изготовлен из закаленной стали. Нельзя измерять твердость тонких поверхностноупрочненных слоев изделий, подвергнутых химико-термической обработке, и твердость различных поверхностных покрытий.

В этих случаях возможно применение других приборов - Роквелла, Виккерса, ПМТ.

Измерение твердости по Роквеллу проводится в соответствии с ГОСТ 9013-59. При этом индентором может служить алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588мм (1/16 дюйма). При проведении испытаний индентор вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р о и основной:

Р = Р о + Р 1 , (7)

Принципиальное отличие измерения твердости на приборе Роквелла от измерения на приборе Бринеля состоит в том, что твердость определяют не по площади отпечатка, полученного при вдавливании индентора, а по его глубине, которая и является критерием твердости при этом испытании.

Глубину вдавливания h определяют после снятия основной нагрузки и по ее значениям вычисляется величина твердости по Роквеллу HR. Естественно, чем больше глубина полученного отпечатка, тем меньше значение твердости.

Твердость по Роквеллу выражается в условных единицах. За единицу твердости принята безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

При испытаниях твердость можно измерять по трем шкалам: А , В , С .

При использовании в качестве индентора алмазного конуса твердость определяют по двум шкалам: А и С , при использовании шарика - по шкале В .

Число твердости по Роквеллу вычисляется по формулам:

При измерении по шкалам А и С:

HRC (HRA) = 100 – e (8)

При измерении по шкале В:

HRB = 130 – e (9)

где e = (h - ho) / 0,002 (10)

При выборе условий испытания целесообразно руководствоваться следующими данными (табл. 1):

Таблица 1

Результаты определения твердости фиксируются на индикаторе прибора, где имеются две шкалы - черная ми красная. Черная используется при измерениях с помощью алмазного конуса или конуса таких же размеров, изготовленного из твердого сплава (А и С ). Красная шкала для измерений с помощью шарика (В ).

Испытания проводятся в следующем порядке:

Устанавливается образец на столике прибора; образец приводится в соприкосновение с индентором с помощью механизма подъема и осуществляется предварительное нагружение. При этом индентор вдавливается в поверхность образца на глубину h о . Достижение предварительной нагрузки Р о = 10 кгс (98 Н) отмечается на шкале установкой маленькой стрелки на красной точке. Положение большой стрелки должно при этом совпадать с цифрой “0” черной шкалы. Если этого не произошло необходимо повернуть шкалу маховичком до точного совпадения этой стрелки с указанной отметкой.

Нажать на клавишу механизма нагружения, в результате чего на индентор подается основная нагрузка Р 1 , под действием которой он углубляется в образец. Выдержка под нагрузкой и снятие нагрузки происходит автоматически. В конечном положении большая стрелка указывает на значение твердости по соответствующей шкале.

Твердость по Роквеллу обозначается цифрами, характеризующими величину твердости, и буквами HR с указанием шкалы, например: 61,0 HRC; 42,0 HRB.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ И МИКРОТВЕРДОСТИ

В ряде случаев необходимо определить твердость тонких поверхностных слоев или распределение ее по сечению образца. Выполнить эти задачи на приборах Бринеля или Роквелла невозможно из-за больших размеров отпечатков. Для таких измерений используют приборы Виккерса или микротвердости (ПМТ).

В указанных приборах в качестве индентора используется четырехгранная алмазная пирамида с углами при вершине 136° (рис. 2.в). Число твердости по Виккерсу и микротвердость определяются как отношение действующей нагрузки Р к площади боковой поверхности полученного пирамидального отпечатка:

(11)

где d - среднее арифметическое длин обеих диагоналей отпечатка.

Для удобства и ускорения вычислений следует пользоваться таблицами, рассчитанными по приведенной формуле.

Испытательные нагрузки при измерениях на приборе Виккерса (ГОСТ 2999 - 75) выбираются в пределах от 5 до 120 кгс (от 49 до 1176 Н). При измерениях микротвердости нагрузки значительно ниже: от 0,005 до 0,5 кгс (от 0,05 до 5 Н). Благодаря этому в последнем случае значительно меньше и размеры полученных отпечатков, что делает возможным определение твердости отдельных структурных составляющих.

Измерение диагоналей полученных отпечатков проводится с помощью микроскопов.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Перед проведением практической части работы необходимо ознакомиться с приборами, на которых предстоит проводить измерения, с техникой измерений и методикой определения результатов.

2. Провести измерение твердости углеродистой отожженной стали (40, 60), дюралюминия и меди на приборе Бринеля. Для этого:

a. Выбрать нагрузку, исходя из данных, приведенных в методических указаниях;

b. Получить отпечаток индентора на перечисленных материалах;

c. При помощи специального микроскопа определить диаметр полученного отпечатка с точностью до сотых долей миллиметра;

d. Используя формулу для определения твердости по Бринелю (5) определить значение твердости испытуемых материалов и занести данные в таблицу 2;

e. При помощи таблиц проконтролировать правильность определения значений твердости и табличные данные также занести в таблицу 2.

3. Провести измерение твердости инструментальной закаленной стали У8 и конструкционной низкоуглеродистой стали 30 на приборе Роквелла. Для этого:

a. В соответствии с таблицей выбрать шкалу, по которой будет проводиться измерение твердости;

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физического металловедения

Измерение твердости металлов

Методические указания к лабораторным работам

для студентов специальностей 150105, 150702

Ю. С. Шатов,

И. П. Горбунов,

А. Г. Гвоздев

Липецк – 2006

Шатов, Ю.С. Измерение твердости металлов. Методические указания к лабораторным работам для студентов специальностей 150105, 150702. /Ю.С. Шатов, И.П. Горбунов, А.Г. Гвоздев. – Липецк: ЛГТУ, 2006. – 33 с.

Предназначены для студентов 3 курса специальностей 150105, 150702. В методических указаниях приведена методика работы на твердомерах. Указывается цель каждой работы; сообщаются теоретические сведения, необходимые для выполнения эксперимента, приводятся схемы приборов; рассматривается порядок выполнения работ и дается форма отчета. Даны варианты индивидуальных заданий студентам для определения твердости металлов.

Ил. 5. Табл. 7. Библиогр.: 6 назв. Приложений 2.

Методические указания утверждены на заседании кафедры физического металловедения 15 сентября 2006 г., протокол № 1

Рецензент – В.В.Логунов

© Липецкий государственный

технический университет, 2006

Общие указания

Цель работы:

    Освоить методику измерения твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере.

    Научиться правильно выбирать прибор, нагрузку и наконечник при испытаниях твердости различными методами и определять твердость выданных образцов.

    Уметь измерять твердость отдельных фаз и структурных составляющих.

Твердость определяет способность металла сопротивляться деформации на поверхности образца или изделия.

Испытания на твердость широко применяется в лабораторных и заводских условиях для характеристики механических свойств металлов и сплавов.

Твердость металлов измеряют при помощи воздействия на поверхность изделий наконечником, изготовленного из твердого материала (закаленная сталь, алмаз и др.) и имеющего форму шарика, конуса, пирамиды или иглы. По характеру воздействия наконечника различают несколько способов измерения твердости: а) метод вдавливания; б) метод отскока; в) метод царапания.

Твердость, определенная вдавливанием, характеризует сопротивление металла пластической деформации.

Твердость, определенная по отскоку, характеризует упругие свойства. Твердость, определенная царапанием, сопротивление разрушению. Таким образом, твердость является специфическим свойством металла и при испытаниях на твердость могут измеряться упругие свойства металлов, сопротивление пластическим деформациям, сопротивление разрушению и ар. Широкое применение испытаний на твердость в практике объясняется тем, что они не требует длительного времени, специальных сложных образцов, могут проводиться на готовых изделиях без их разрушения и позволяют по эмпирическим соотношениям судить о других механических свойствах металла. Выбор формы, размеров наконечника и величины нагрузки зависит от целей испытания, структуры, ожидаемых свойств, состояний поверхности и размеров испытуемого образца.

Если металл имеет гетерогенную структуру с крупными выделениями отдельных структурных составляющих, различных по свойствам (например, серый чугун, подшипниковые сплавы), то для измерения твердости выбирают шарик большого диаметра.

При испытаниях металлов с высокой, твердостью (например, закаленная сталь) применяют алмазный конус при снижении общей нагрузки (во избежание образования трещин в образце). Однако значительное снижение нагрузки нежелательно т.к. приведет к резкому уменьшению деформируемого объема и может дать значения, не характерные для основной массы металла.

Измерение микротвердости имеет целью определить плотность отдельных зерен, фаз, структурных составляющих и поверхностных слоев металла при его химико-термической обработке. В этом случае объем, деформируемый вдавливанием, должен быть меньше объема измеряемого зерна, поэтому прилагаемая нагрузка выбирается небольшой.

Значительное влияние на результаты испытаний твердости оказывает состояние поверхности материала. Если поверхность неровная – криволинейная или с выступами – то отдельные участки в различной степени оказывает сопротивление вдавливанию, что приводит к ошибке при измерении твердости.

Поэтому, чем меньше нагрузка, тем тщательнее готовится поверхность. Она должна представлять шлифованную горизонтальную площадку, а для измерения микротвердости и полированную. Измеряемая поверхность должна быть установлена горизонтально, т.е. перпендикулярно действию нагрузки. Противоположная сторона образца должна быть зачищена и не иметь окалины, т.к. последняя при нагружении сминается, что искажает результаты измерения. Метод вдавливания твердого наконечника получил наибольшее распространение в практике испытаний металлов. К этому методу относятся методы Бринелля, Роквелла, Виккерса. Измерение твердости этими методами стандартизированы и устанавливаются ГОСТами:

Бринелля – ГОСТ 9012 – 59, Роквелла – ГОСТ 9013 – 59, Виккерса – ГОСТ 2999 – 59.

На рис. 1 показан диапазон значений твердости этих трех принципиально одинаковых методов, основанных на статическом вдавливании твердого наконечника.

Рис. 1. Диапазон значений твердости

Методические указания по измерению твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере ПМТ – 3

Общие сведения о методах испытания твердости на приборах Бринелля и Роквелла описано в учебных пособиях , с которыми студент должен подробно ознакомиться при подготовке к данной работе.

Твердость по Бринеллю – НВ, Н/м 2 .

При измерении твердости на приборе Бринелля студент должен руководствоваться следующими советами:

    Прежде чем приступить к испытанию на твердость, необходимо правильно подобрать по табл. 2 нагрузку (Р) и диаметр шарика (Д) исходя из материала и толщины образца, ГОСТ 9012 – 59. Нагрузку выбирают так, чтобы соблюдался закон подобия

Р/Д 2 = const (1)

В этом случае возможно сравнение твердости, полученной при различном диаметре шариков. Минимальная толщина испытуемого образца должна быть не менее десятикратной глубины отпечатка. На обратной стороне испытуемого образца после вдавливания шарика не должно быть следов деформации.

    Чем больше диаметр шарика, тем выше точность в определении твердости.

    Твердость материала при измерении по Бринеллю не должна превышать 4500 МН/м 2 , т.к. для вдавливания используется стальной закаленный шарик с твердостью НВ = 6000 МН/м 2 и при испытании более твердых металлов он будет деформироваться сам.

    Продолжительность выдержки образца строго постоянна и устанавливается перед измерением от 10 до 60 секунд (согласно табл.2) в зависимости от материала.

    Диаметр отпечатка (d), полученного после вдавливания, измеряется при помощи специальной лупы с точностью до 0,05 мм. При этом для лучшей освещенности отпечатка окно лупы располагают в направлении к источнику света.

    Значение твердости находят из таблиц или рассчитывает по формуле Н/м 2

    Поверхность испытуемого образца должна быть свободна от окалины и других посторонних веществ, при этом поверхность обрабатывается в виде плоскости так, чтобы края отпечатка были отчетливо видны при измерении его диаметра.

    Расстояние от центра отпечатка до края образца должно быть больше или равно 2,5 d,. а между центрами двух соседних отпечатков – больше или равно 4 d.

    Диаметры отпечатков (d) должны находиться в пределах

.

В случае несоблюдения этого условия испытание признается неверным и должно быть повторено с применением соответствующей нагрузки.

Порядок измерения твердости на приборе Бринелля

После того, как подобраны нагрузка, диаметр шарика и установлено время выдержки, испытуемый образец помещают на столик и при помощи маховичка приводят в соприкосновение с шариком до упора, создавая этим предварительную нагрузку в 1000 Н. Нажатием кнопки включают электродвигатель. Нагружение образца, выдержка и снятие нагрузки осуществляются автоматически. Длительность выдержки сигнализируется зажиганием лампочки. После отключения электродвигателя столик опускают и измеряют полученный отпечаток специальной лупой. Диаметр отпечатка замеряют в двух взаимно перпендикулярных направлениях и берут среднее значение. Зная диаметр отпечатка и приложенную нагрузку, по табл. 1 находят величину твердости испытуемого образца.

Твердость по Роквеллу – HRB , Н R А, Н R С, HRF

При измерении твердости на приборе Роквелла студент должен руководствоваться следующими советами:

    Испытания твердости на этом приборе могут производиться вдавливанием закаленного шарика (D =I,588 мм), алмазного конуса. При этом алмазный конус применяется для испытания твердых металлов (НВ – 2500 МН/м 2).

    В зависимости от типа индентора и выбранной нагрузки измерения твердости проводят по шкалам A,B,C,F. Полученное значение твердости является величиной безразмерной и выражается в единицах данной шкалы соответственно HRA, HRB, HRC, HRF (см. табл. 3).

    Прибор измеряет глубину отпечатка. Каждое деление шкалы индикатора соответствует глубине вдавливания (h) в 0,002 мм, поэтому, чем меньше h, тем больше твердость.

    Соотношение между твердостью и глубиной вдавливания определяется выражениями

для алмазного конуса
(3)

для шарика
(4)

    Перед началом испытания необходимо выбрать шкалу измерения, т.е. нагрузку, шкалу отсчета и индентор (шарик или конус). Шкалы А и С применяет для измерения закаленной стали, причем, когда требуется измерить твердость в поверхностном слое, например, после химико-термической обработки, после закалки ТВЧ, нагрузку снижают до 500 Н, т.е. использует для измерения шкалу А. Для определения твердости отожженной и нормализованной стали применяют шкалу В, нагрузку 1000 Н. Дня цветных металлов, имеющих малую твердость, измерения проводят по шкале F. Нагрузка в этом случае снижена до 500 Н, чтобы уменьшить глубину проникновения стального шарика.

    Поверхность испытуемого образца должна быть очищена шлифовкой от окалины и других посторонних веществ.

    Перпендикулярность приложения нагрузки обеспечивается за счет создания параллельности опорных поверхностей образца.

    Минимальная толщина образца должна бить не меньше восьмикратной глубины внедрения наконечника после снятия основной нагрузки. На обратной стороне образца не должно быть заметно после измерения твердости следов деформации. Расстояние от края образца или между соседними отпечатками должно быть не менее 3 мм.

    Отсчет результатов измерения твердости производится в целых делениях шкалы индикатора с точностью 0,5 единицы шкалы. За число твердости принимается результат отдельного измерения. Причем на каждом образце должно быть произведено не менее трех измерений.

Порядок измерения твердости на приборе Роквелла

После подготовки поверхности образца и выбора шкалы устанавливается соответствующая нагрузка и индентор (шарик или алмазный конус). Образец помещают на столик прибора и при помощи маховичка приводят в соприкосновение с наконечником, создавая предварительную нагрузку в 100 Н, что отмечается на циферблате установкой маленькой стрелки против красной точки. При этом большая стрелка должна занять вертикальное положение, указывая вверх с отклонением ±5 делений шкалы от вертикали. Если отклонение стрелки превышает 5 делений, предварительная нагрузка должна быть снята, а измерение твердости произведено в другой точке образца.

Затем совмещает большую стрелку с нулем черной шкалы (независимо от выбранной шкалы измерения) и нажатием на рычаг дают основную нагрузку.

После полной остановки движения стрелки (через 2–3 с) производится отсчет твердости по шкале индикатора. Необходимо помнить, что при измерении алмазным конусом отсчет твердости производится по черной шкале, а при измерении стальным шариком – по красной шкале. Несмотря на ряд недостатков метода Роквелла: условность величины определяемой твердости, малая точность измерения этот метод широко применяется для массового контроля. Причиной этого является ряд достоинств метода:

    Быстрое определение твердости благодаря автоматизации приборов.

    Возможность определения твердости материалов с НВ > 500 ед.

    Возможность измерения твердости на малых и тонких образцах.

Твердость по Роквеллу HRA, HRB, HRC, HRF может быть переведена в твердость по Бринеллю при помощи таблицы (см. табл. 4), составленной на основании экспериментальных данных

Метод Виккерса

При измерении твердости по Виккерсу согласно ГОСТ 2999 – 59 в испытуемый металл вдавливается четырехгранная алмазная пирамида с углом при вершине 135°. Для испытания могут применяться нагрузки 50, 100, 200, 300, 500, 1000 и 1200 Н. Отпечаток получается в виде квадрата. При помощи микроскопа, находящегося на приборе, измеряется диагональ отпечатка. Твердость по Виккерсу HV определяют как удельное давление, приходящееся на единицу поверхности отпечатка Н/м 2

(5)

d – длина диагонали отпечатка, мм 2 .

Числа твердости по Бринеллю и Виккерсу имеют одинаковую размерность, а для металлов с твердостью до 450 ед. они одинаковы.

Измерение твердости алмазной пирамидой дает более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом, так как диагонали отпечатка достаточно велики даже при малой глубине отпечатка. При вдавливании пирамиды соотношение между диагоналями получающегося отпечатка при изменении нагрузки остается постоянным, что позволяет в широких пределах менять нагрузку. Величину нагрузки выбирают в зависимости от целей исследования, толщины и твердости исследуемого образца. Продолжительность выдержки под нагрузкой составляет: для черных металлов 10–15 с, для цветных металлов 30–60 с.

Прибор Виккерса (рис.2) снабжен рычажным устройством 1 для нагружения алмазной пирамиды 5, специальным микроскопом 6 для измерения диагоналей отпечатка, а также грузовым приводом 7.

Поверхность образцов для определения твердости по Виккерсу предварительно тщательно отшлифовать наждачной бумагой тонкого номера или отполировать. Толщина исследуемого образца должна быть не меньше, чем 1,5 диагонали отпечатка.

На приборе Виккерса можно измерять твердость мягких металлов и очень твердых сплавов и, кроме того, твердость в тонких поверхностных слоях, например при обезуглероживании, поверхностном наклепе, химико-термической обработке и т.д.

Однако каждое определение по Виккерсу занимает сравнительно много времени и требует тщательной подготовки поверхности образца, что является основным недостатком этого метода, препятствующим широкому применению его в цеховых условиях.

Порядок измерения твердости по Виккерсу

    Определяют необходимую величину нагрузки в зависимости от материала и Форму испытуемого изделия, пользуясь таблицей 5.

    Образец помещается на столике 4, установленном на винте 3, который перемещается вращением маховичка 2 до тех пор, пока не произойдет соприкосновение алмазной пирамида о поверхность образца.

    Включается рукоятка 1, и нагрузка системой рычагов передается на образец.

    Отводят изделие от соприкосновения с алмазным наконечником поворотом маховика против часовой стрелки и, поворачивая головку микроскопа вправо до упора, совмещает объектив микроскопа с отпечатком.

    Отпечаток фокусируют и измеряют величину диагоналей. Для этого вращением винта подводят к краю диагонали нулевую отметку шкалы, а затем, вращая микровинт, подводят к противоположному концу диагонали подвижную линию. При отсчете пользуются шкалой микроскопа, одно деление которой равно 0,1 мм, и микровинтом, одно деление которого на лимбе соответствует 0,001 мм при увеличении в 100 раз. Для измерения второй диагонали поворачивают головку микроскопа на 90° – по часовой стрелке. После замера двух диагоналей определяет среднее значение d.

    Пользуясь таблицей, по значению d определяют твердость по Виккерсу (HV) или находят ее по формуле (5).

Метод измерения микротвердости

При определении микротвердости четырехгранная алмазная пирамида (с углом между противоположными гранями при вершине 135°) вдавливается в испытуемый материал под очень небольшой нагрузкой от 0,05 до 5 Н. Число твердости выражается в величинах твердости Н и определяется по формуле (5).

Числа твердости согласно ГОСТ 9450 – 60 обозначают символом Н с указанием в индексе величины нагрузки в граммах (например, H 50 = 220 означает, что число микротвердости 220 получено при нагрузке 0,5 Н).

Испытание на микротвердость применяют для контроля качества материала очень мелких деталей, а также для определения твердости структурных составлявших, твердости покрытий и весьма тонких поверхностных слоев. Поверхность образца для определения микротвердости подготавливают так же, как и для микроисследования. Полирование рекомендуется электролитическое во избежание наклепа в тонком поверхностном слое. Для определения микротвердости применяют прибор ПМТ – 3. Это вертикальный микроскоп 1 с нижним положением столика, который

Рис. 2. Прибор Виккерса

Рис. 3. Общий вид прибора ПМТ – 3

Это вертикальный микроскоп 1 с нижним положением столика, который имеет два сменных объектива с увеличением в 487 и 130 раз (обычно пользуются увеличением в 487) и окуляр – микрометр 4 для измерения диагонали отпечатков. Вращением столика 2 выбранное место на шлифе 3 подводят под индентор – пирамиду. Принцип измерения твердости такой же, как и по Виккерсу, только пирамида отличается более высокой точностью изготовления. На рис. 3 показан общий вид прибора ПМТ – 3.

Выбор нагрузки зависит от задачи измерения. Центр отпечатка должен быть удален от края шлифа или от края соседнего отпечатка не менее чем на две диагонали отпечатка. Если отпечаток получен слишком близко к краю, то вдавливание индентора облегчается и поэтому значение твердости оказывается заниженным. Если первый отпечаток расположен слишком близко от второго, то второй отпечаток будет находиться в зоне, уже наклепанной от первого вдавливания, поэтому твердость получается завышенной.

При малой нагрузке велика относительная погрешность в измерении отпечатка и сильнее сказывается качество шлифа, поэтому желательно брать наибольшую нагрузку.

Вместо определения числа твердости по формуле обычно пользуется таблицами, рассчитанными для нагрузок 0,2; 0,5; 1 и 2 Н. Но если нужно измерить твердость отдельного зерна, приходится снижать нагрузку, пока отпечаток не окажется настолько малым, чтобы до краев зерна оставалось не менее двух диагоналей. Даже отпечаток, далеко отстоящий от видимой границы зерна, может давать завышенное (или заниженное) значение твердости из–за того, что под ним на небольшой глубине под поверхностью шлифа залегает другая фаза (более твердая или более мягкая). Индентор "упирается" в нее или, наоборот, "проваливается" сквозь твердую корку в мягкую подложку. Поэтому разброс измеренных значений микротвердости, как правило, гораздо больше, чем при обычных измерениях твердости. Измерения микротвердости имеют ценность только при правильной статистической обработке диагонального числа размеров.

Среднее значение микротвердости Н вычисляем по формуле (6), среднеквадратичные значения S А – по формуле (7)

(6)

где n – число измерений,

Н i – текущее измерение.

Для возможности обработки полученных данных на ЭВМ производили преобразования

число степеней свободы

где
– дисперсия;

– дисперсия измерений структурной составляющей А;

– дисперсия измерений структурной составляющей B.

Критерий Стьюдента подсчитываем по формуле

По значениям и находят из таблицы 6 значение Р – вероятности из того, что действительные твердости H 1 и H 2 одинаковы. Величина Р = 0,9 означает, что с вероятностью более 90 % значения микротвердости первого и второго образцов должны совпадать. Малые значения Р указывают на существование достоверной разницы в твердости.

Порядок замера микротвердости

Перед измерением микротвердости необходимо:

    Подготовить поверхность исследованного образца так же, как при микроструктурном анализе (шлифовка – полировка – травление),

    Определить цену деления окуляр – микрометра (см. работу “Количественный анализ”).

    Подобрать нагрузку в зависимости от размера к предполагаемой твердости.

    Закрепить шлиф к неметаллической пластине с помощью ручного пресса и пластилина строго параллельно горизонтальной плоскости предметного столика.

После этого приступают к измерениям.

      Пластину со шлифом устанавливают на столике.

      Перемещением столика микровинтами подводят выбранное для укола место под перекрестием окуляра.

      Устанавливают барабанчик окулярного микрометра 7 в нулевое положение.

      Поворачивают столик до упора (делать плавно), при этом образец располагается под нагрузкой.

      Нагружают образец медленным (10–15 с) поворотом рукоятки арретира индентора 4 и делают выдержку 5 с., после чего рукоятку арретира возвращают в исходное положение. Каждый раз, прежде чем вращать столик, необходимо убедиться, что алмазная пирамида поднята. Внимание! Вращая столик при опущенном инденторе (наконечнике), можно сломать алмаз.

      Сняв нагрузку, столик возвращают вращением в исходное положение, т.е. под микроскоп. Если отпечаток значительно удален от перекрестия (см. рис. 4. (1)), винтами 9 (рис. 3) осторожно смещают изображение отпечатка в перекрестие.

      Микровинтом 7 перемещают перекрестие из положения 1 в положение 2 (рис. 4) и на лимбе микровинта 7 определяют длину диагонали отпечатка в делениях лимба d дел.

Результаты измерений заносят в таблицу. Величину диагонали отпечатка в микронах определяют по формуле с учетом найденной ранее цены деления

d мкм =
d дел.

Рис. 4. Приемы последовательного измерения диагонали отпечатков на приборе ПМТ–3 окуляр – микрометром АМ9–2 (АМ9–1)

Рис. 5. График для определения микротвердости без пересчета

Сделав перевод каждого измеренного значения диагонали в твердость, находят среднее значение твердости (отдельно дет каждого измерения). Поскольку зависимость твердости от длины диагонали нелинейная, нельзя вычислять сначала среднюю диагональ, а потом находить по ней твердость. Для ускорения работы рекомендуется построить на миллиметровке, используя формулу (5), график в координатах d дел – твердость и из него находить все значений твердости.

Методика работы

В этой работе студенты знакомятся с техникой определения твердости по Бринеллю, Роквеллу, Виккерсу и микротвердости на приборе ПМТ – З и приобретают навык для того, чтобы при выполнении других работ они могли определять твердость самостоятельно. Кроме, того, студенты знакомятся с устройством прессов Бринелля, Роквелла, Виккерса, прибора ПМТ – 3 и с принципом их работы.

Задание на определение твердости методом Бринелля и Роквелла

Студент изучает индивидуальную задачу (см. приложение 1) и решает ее самостоятельно. Прежде чем начать испытания студент выясняет, какие из образцов надо испытать по Бринеллю и какие по Роквеллу.

    Измерить твердость на образцах, предварительно измерив штангенциркулем толщину образцов.

    Пользуясь табл.2, выбрать, диаметр шарика и нагрузку.

    При испытании по Роквеллу необходимо установить, по какой шкале надо производить измерение твердости (по шкале А, В, С и F), пользуясь при этом табл. 3. Измерить твердость образца по Бринеллю и Роквеллу и сопоставить ее.

    Твердость по Бринеллю определить по таблице и рассчитать по формуле (2). Сопоставить полученные результаты. Диаметр отпечатка замерить в двух перпендикулярных направлениях и брать среднее значение.

    Твердость по Роквеллу определить из среднего значения трех измерений.

    Определить предел прочности и предел выносливости, пользуясь табл.8.

    Все полученные результаты занести в таблицы.

Задание на определение твердости по Виккерсу

На приборе могут работать одновременно не более 2–3 студентов. Для измерения твердости по Виккерсу образцы шлифуют и полируют. Испытанию на HV подвергаются образцы различных марок углеродистой или легированной стали, проведшие термическую обработку (отжиг, нормализацию, закалку, отпуск).

    Провести испытания на твердость различных марок углеродистой стали 20, 35, 45, У7, У8, У12 в отожженном состоянии. Сделать вывод о влиянии содержания углерода на твердость стали. Объяснить полученные результаты в связи с изменением структуры.

    Провести испытания стали 45, У8 в нормализованном, закаленном и отпущенном состояниях. Сделать вывод о влиянии термообработки на свойства стали.

    Один из отожженных образцов испытать по Бринеллю и Роквеллу, сопоставить, числа твердости, полученные по Виккерсу, по Бринеллю и Роквеллу. Аналогичное задание по пунктам 1, 2, 3 по указанию преподавателя может быть выполнено для легированных марок сталей.

    При измерении твердости по Виккерсу на каждом образце делается 10–15 отпечатков.

    Полученные результаты замеров занести в таблицу.

Задание на определение микротвердости

На одном приборе ПМТ – 3 могут работать одновременно не более 2–3 студентов.

    Измерить микротвердость образцов в соответствии с индивидуальным заданием (см. приложение 2).

    На шлифе измеряют твердость различных фаз или структурных составляющих. Если это углеродистая сталь (например, ст.45), то определяют твердость феррита и перлита. Студент делает по 15 отпечатков на каждой структурной составляющей.

    Каждый студент вычисляет среднее значение H, а также все внесенные в табл. 7 величины (отдельно для каждой фазы).

    Из 30–45 измеренных значений микротвердости перлита и феррита с интервалом в 10 ед. строят гистограмму распределения микротвердости для каждой структурной составляющей.

    С помощью формул (8), (9), (10) и табл. 6 проверяют, насколько достоверно найденное различие в твердости феррита и перлита, если:

    1. использовать по 3 замера, твердости каждой составляющей,

      использовать 10 замеров,

      использовать 20, 30, 45 замеров (объединить данные двух – трех студентов).

Полученные результаты изобразить графически.

Форма отчета

Студент представляет письменный отчет о работе, в котором должны быть приведены:

    Краткое описание определения твердости по Бринеллю, Роквеллу, Виккерсу и микротвердости с изложением теоретических положений и формул.

    Схема одного из приборов c указанием назначений основных деталей.

    Письменное обоснование выбора прибора и условий испытаний для решения индивидуальной задачи.

    Результаты испытаний в виде таблицы и графики с объяснением причин изменения твердости в зависимости от вида термической обработки.

    Кроме решения индивидуальной задачи каждый студент выполняет дополнительную работу, указанную в заданиях по определению твердости на приборах Бринелля, Роквелла, Виккерса и ПМТ – 3, что должно найти отражение в отчете.

Библиографический список

1. Гвоздев А.Г. Лабораторный практикум по материаловедению. Учебное пособие [Текст] / А.Г. Гвоздев. Липецк: ЛГТУ, 2002.

2. Лившиц Б.Г. Металлография [Текст] / Б.Г. Лившиц. М.: Металлургия, 1971.

3. Захаров A.M. Диаграммы состояния двойных и тройных систем [Текст] / A.M. Захаров. М.: Металлургия, 1978.

4. Кример Б.И. Лабораторный практикум по металлографии и физическим свойствам металлов и сплавов [Текст] / Б.И Кример, Е.В. Панченко, Л.А. Шишко, В.Н. Николаева, Ю.С. Авраамов. М.: Металлургия, 1966.

5. Панченко Е.В. Лаборатория металлографии [Текст] / Е.В. Панченко, Ю.А. Скаков, Б.И. Кример, П.П. Арсентьев, К.В. Попов, М.Я. Цвилинг. М.: Металлургия, 1965.

6. Штремель М.А. Лабораторный практикум по спецкурсу «Прочность сплавов». Часть 1. [Текст] / М.А. Штремель. М.: Металлургия, 1968.

Таблица 1

Числа твердости по Бринеллю, НВ (МН/м 2 ∙× 10 -1)

Диаметр шарика 10 мм

Диаметр шарика 5 мм

Диаметр шарика 2,5 мм

Диаметр отпечатка

твердость НВ

Диаметр отпечатка

твердость НВ

Диаметр отпечатка

твердость НВ

Таблица 2

Твердость по Бринеллю

Твердость НВ

Толщина образца, мм

Соотношение между нагрузкой Р и квадратом диаметра шарика D2

Диаметр шарика D

Выдержка под нагрузкой, с

Таблица 3

Шкалы испытания по Роквеллу

Обозначения

Наконечник

Шкала индикатора для отсчета твердости

Шкалы испытания

Чисел твердости

Алмазный конус

Алмазный конус

Стальной шарик

Стальной шарик

Таблица 4

Толщина образца, мм

Таблица 5

Таблица сопоставления чисел твердости, определяемых различными методами

По Роквеллу

По Шору Н (по склероскопу)

По Бринеллю МН/м2∙10-1

По Роквеллу

По Шору Н (по склероскопу)

По Бринеллю МН/м2∙10-1

Таблица 6

Значения t при данном числе свободы и данной величине вероятности Р

Таблица 7

Соотношение между твердостью и прочностью металлов и сплавов

Материал

Предел прочности МН/м2∙10-1

Предел выносливости σ-1,

Сталь (НВ=125–175)

0,15 НВ (для с=0,2–0,45%)

Сталь (НВ=175–450)

0,12 НВ (для с=0,2–0,8%)

Серый чугун

Дюралюминий

    отожженный

    после закалки и старения

Медь, латунь, бронза

    отожженные

    наклепанные

Цинковые сплавы

Приложение 1

Индивидуальные задания студентам для определения твердости методом Бринелля и Роквелла

В заданиях 1–10. Измерить твердость металла или сплава на приборах Бринелля и Роквелла и сравнить полученные результаты:

№1– техническое железо, №2– алюминий, №3 – медь,

№4 – мягкая сталь, №5– вольфрам, №6 – титан, №7 – сталь 20,

№8 – сталь 45, №9 – сталь У8, №10 – сталь УI2.

В заданиях 11–14. Измерить твердость образцов, имеющих различную толщину сравнить полученные результаты:

№11 – мягкая сталь, №12 – титановый сплав, №13 – медь,

№14 – состаренный дюралюминий.

В заданиях 15–22. Измерить твердость образцов закаленной стали, используя различные нагрузки. Полученные результаты сравнить:

№15 – сталь 45, №16 – сталь 40Х, №17 – сталь Р18, №18 – сталь У7,

№19 – сталь Р9, №20 – сталь У12, №21 – сталь ХВГ, №22 – сталь 9ХС.

В заданиях 23–26, Измерить твердость поверхностного слоя в образцах, подвергнутых различной термообработке:

№23 – закаленная сталь, №24 – цементация + закалка,

№25 – азотирование, №26 – закалка ТВЧ.

№27 – На образце толщиной 3 мм сделать отпечатки шариком 2,5, 5 и 10 мм. Измерить диаметр отпечатка и вычислить твердость, сравнить полученные результаты и объяснить расхождение.

№28 – На образце мягкой стали сделать серию отпечатков на приборе Бринелля, ставя их на расстоянии 0,5 и 4 мм друг от друга. Сравнить полученные значения твердости и объяснить их различие.

№29 – Измерить твердость образца углеродистой стали (отожженной) шариком и конусом. Сравнить полученные результаты.

В заданиях 30–37. Провести испытания твердости НВ в заданных сплавах при нагрузках 187,5; 750; 1000; 1250 и 1500 Н×10 -1 для цветных сплавов и при 750, 1000, 1250, 3000 Н×10 -1 для сталей, чугунов шариком D = 10 мм. Подсчитать твердость для каждой нагрузки Р. Построить логарифмическую зависимость lgP – lgd, определить графическим путем константы d и n в математической зависимости между нагрузкой и твердость. P=ad n

№30 – алюминиевый сплав, №31 – латунь, №32 – медь,

№33 – трансформаторная сталь, №34 – сталь У12, №35 – серый чугун,

№36 – белый чугун, №37– модифицированный чугун.

В заданиях 38–49. В заданном сплаве провести испытания твердости шариками различных диаметров (2,5;5;10 мм при P=const) и сделать вывод о влиянии диаметра шарика на твердость:

№38 – сталь 20, Р=7500 Н, №39 – сталь 45, P=7500 Н,

№40 – сталь У8, Р=7500 Н.

№41 – Провести испытание образца на твердости шариками различных диаметров:2,5, 5 и 10 мм. Нагрузки, требующиеся для получения одинакового значения твердости, подсчитать из равенства P/D 2 = const

№42 – Провести испытание на твердость по Роквеллу различных марок стали: 20, 45, У7, У10, 712 в отожженном состоянии. Сделать вывод о влиянии содержания углерода на твердость стали (построить график HR=φ(%С)).

№43 – Провести испытание по Роквеллу образцов алюминия, стали отожженной и закаленной, выбрав соответствующие инденторы и нагрузки.

№44 – Измерить твердость по Роквеллу трех образцов сплавов системы Рb–Sb с содержанием 5, 20, 50 % Sв. Начертить диаграмму Рb– Sb и по полученным значениям твердости нанести на диаграмме линию, показывающую изменение твердости в зависимости от состава. Объяснить, как связано изменение твердости со структурой сплава.

№45 – В сплавах Сu – Zn содержащих 10, 30 и 42% Zn, выполнить работу, указанную в заданиях №44.

В заданиях 46–49. Измерить твердость двух образцов, один из которых находится в деформированном, а другой – в рекристаллизованном состоянии. Указать, какой образец подвергался рекристаллизации и его примерную температуру. Объяснить, какие изменения в структуре металла в процессе рекристаллизации вызвали изменения твердости. В качестве материала используете: №46 – сталь 20, №47 – .медь, №48 – латунь, №49 – алюминий,

№50 – Образец толщиной 20 мм закален, затем разрушен и со стороны излома зашлифован. Измерить твердость по толщине образца (через каждые 2 мм), построить график в координатах: твердость – расстояние от поверхности образца. Объяснить ход полученной кривой.

№51 – Измерить твердость двух фрез, изготовленных из быстрорежущей стали (измерения вести на зачищенной поверхности).

На основании полученных результатов объяснить, какая из фрез была подвергнута окончательной термообработки, какая еще должна пройти.

№52 – Измерить твердость стали 45, используя шкалы А, В, С и F. Сопоставить полученные значения твердости, предварительно переведя их в числа Бринелля. Объяснить причины расхождения в полученных результатах и какая из шкал в данном случае долина быть применена.

Приложение 2

Индивидуальные задания по измерению, микротвердости

№1 – Измерить микротвердость феррита в стали 20 и перлита в стали У7.

№2 – Измерить микротвердость феррита в стали 30 и перлита в стали У7.

№3 – Измерить микротвердость феррита и перлита в стали 40.

№4 – Измерить микротвердость феррита и перлита в стали 45.

В заданиях №5–8 – Измерить микротвердость феррита и сорбита в стали, подвергнутой отжигу и нормализации:

№5 – сталь 20Х. №6 – сталь 30Х. №7 – сталь 40Х. №8 – сталь 50Х,

В заданиях 9–11. Измерить микротвердость феррита, перлита и структурно-свободных карбидов в сталях, подвергнутых отжигу при t =850° C:

№9 – сталь Р9. №10 – сталь PI8. №11 – сталь ХI2.

В заданиях 12–15. Изучить влияние легирующих элементов на твердость феррита. Образцы подвергают отжигу при температуре 760–780° С.

№12 – сталь 1XI3. №13 – сталь 2X13. №14 – трансформаторная сталь.

№15 – динамная сталь.

№16 – Определить микротвердость структурных составляющих в свинцовистом баббите, содержащем 15% Sb.

№17 – Определить микротвердость фаз в латуни (40% Zn) .

№18 – Сталь 45 подвергнута неполной закалке с температуры 740 o С. Определить твердость феррита и мартенсита.

В заданиях 19–25. Сталь подвернута химико-термической обработке. Определить микротвердость в поверхностном слое и построить график распределения микротвердости по глубине слоя образца подвергнутого:

№19 цементации, №20 цементации и закалке, №21 азотированию,

№22 актированию, №23 борированию.

В заданиях 24–27. Измерить твердость феррита при нагрузках 20, 50, 100 и 200 Н×10 -1 и объяснить различие в микротвердости в следующих марках стали;

№24 – сталь 20, №25– сталь 25, №26 – трансформаторная сталь,

№27 – сталь У8 (для перлита).

Техника безопасности при определении твердости на приборах Бринелля, Роквелла, Виккерса и ПМТ–3

    Соблюдать общие правила безопасности при работе на электроустановках.

    Во избежание падения гирь, применяемых для создания нагрузки, навеска гирь должна осуществляться с чередованием прорезей (поворот на 90° вокруг оси).

    При определении твердости цилиндрических поверхностей применять специальные призматические насадки.

Шатов Юрий Семенович

Горбунов Иван Петрович

Гвоздев Анатолий Григорьевич

ИЗМЕРЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Методические указания к лабораторным работам

Твердости измерения твердости , различающихся по характеру... Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде... металлов на твердость по Бринеллю Число твердости по Бринеллю, измеренное ...

  • Строение металлов (1)

    Реферат >> Промышленность, производство

    Фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют спо­собами Бринелля, Роквелла и Виккерса... или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами...

  • Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твёрдость. Твёрдость - свойство материала сопротивляться проникновению в него другого, более твёрдого тела — индентора. Обычно испытания на твердость производятся чаще, чем определение других механических характеристик металлов: деформации, прочности, относительного удлинения, пластичности и прочее.

    Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твердого тела. Для определения твердости в поверхность материала с определённой силой вдавливается тело (индентор*), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твердости материала. Таким образом, под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела - индентора. В зависимости от способа измерения твердости материала, количественно ее характеризуют числами твердости по Бринеллю (НВ), Роквеллу (HRC) или Виккерсу(HV).


    Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника - шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку - упругие свойства, вдавливанием - сопротивление пластической деформации. Перспективным и высокоточным методом является метод непрерывного вдавливания, при котором записывается диаграмма перемещения, возникающего при внедрении индентора, с одновременной регистрацией усилий. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).


    Таблица 1 - Особенности различных методов измерения твердости.


    Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра под действием заданной нагрузки в течение определенного времени. В результате вдавливания шарика на поверхности образца получается отпечаток (лунка). Число твердости по Бринеллю, обозначаемое HB (при применении стального шарика для металлов с твердостью не более 450 единиц) или HBW (при применении шарика из твердого сплава для металлов с твердостью не более 650 единиц).
    Для измерения твердости по методу Бринелля, в нашем каталоге представлен современный и - более улучшенный твердомер, может быть использован для определения твердости закаленных и незакаленных сталей, чугуна, цветных сплавов, мягких материалов для вкладышей подшипников. Все твердомеры сертифицированы в РФ и могут быть применены на производстве.


    Твердость по методу Роквелла - твердость, определяемая разностью между условной максимальной глубиной проникновения индентора и остаточной глубиной его внедрения под действием основной нагрузки, после снятия этой нагрузки, но при сохранении предварительной нагрузки. При этом методе индентором является алмазный конус или стальной закаленный шарик. В отличие от измерений по методу Бринелля твердость определяют по глубине отпечатка, а не по его площади. Глубина отпечатка измеряется в самом процессе вдавливания, что значительно упрощает испытания. Нагрузка прилагается последовательно в две стадии (ГОСТ 9013-59): сначала предварительная, обычно равная 10 кгс (для устранения влияния упругой деформации и различной степени шероховатости), а затем основная.

    Измеряет разность между глубиной отпечатков, полученных от вдавливания наконечника под действием основной и предварительной нагрузок.


    При измерении твердости методом Роквелла необходимо, чтобы на поверхности образца не было окалины, трещин, выбоин и др. Необходимо контролировать перпендикулярность приложения нагрузки и поверхности образца и устойчивость его положения на столике прибора. Расстояние отпечатка должно быть не менее 1,5 мм при вдавливании конуса и не менее 4мм при вдавливании шарика. Толщина образца должна не менее чем в 10 раз превышать глубину внедрения наконечника после снятия основной нагрузки. Твердость следует измерять не менее 3 раз на одном образце, усредняя полученные результаты.


    Твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине равным 136 градусов. После снятия нагрузки вдавливания измеряется диагональ отпечатка. Число твердости по Виккерсу HV подсчитывается как отношение нагрузки к измеренному значению диагонали отпечатка:
    Число твердости по Виккерсу обозначается символом HV с указанием нагрузки и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм2) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10 - 15 с, а для цветных металлов - 30 с.


    При измерении твердости по Виккерсу должны быть соблюдены следующие условия:
    . плавное возрастание нагрузки до необходимого значения;
    . обеспечение перпендикулярности приложения действующего усилия к испытуемой поверхности;
    . поверхность испытуемого образца должна иметь шероховатость не более 0,16 мкм;
    . поддержание постоянства приложенной нагрузки в течение установленного времени;
    . расстояние между центром отпечатка и краем образца или соседнего отпечатка должно быть не менее 2,5 длины диагонали отпечатка;
    . минимальная толщина образца должна быть для стальных изделий больше диагонали отпечатка в 1,2 раза; для изделий из цветных металлов - в 1,5 раза.
    Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.


    В нашем каталоге представлена целая линейка стационарных твердомеров по методу Виккерса: , и .
    представляют собой механические твердомеры, обладающие высокой точностью и удобством в эксплуатации и обслуживании. Данные твердомеры широко применяются на производстве, в научно-исследовательских институтах и лабораториях. Уникальное устройство преобразования и микро окулярное устройство считывания измерений, позволяющие сочетать в приборе легкость использования и высокую точность измерений.


    *Индентор (англ. indenter от indent — вдавливать) — изготовленный из алмаза, твёрдого сплава или закаленной стали наконечник прибора, используемого для измерения твёрдости. Иногда инденторами (Nanoindenter) называют сами приборы для измерения нанотвердости.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...